{"created":"2023-06-20T13:43:14.379120+00:00","id":938,"links":{},"metadata":{"_buckets":{"deposit":"3df6d9a0-3e74-478a-9a7c-c085b0e49594"},"_deposit":{"created_by":2,"id":"938","owners":[2],"pid":{"revision_id":0,"type":"depid","value":"938"},"status":"published"},"_oai":{"id":"oai:fut.repo.nii.ac.jp:00000938","sets":["1"]},"author_link":["11695","11696","11692","11694","11693","11697"],"item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2009-08-01","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"39","bibliographicPageEnd":"30","bibliographicPageStart":"23","bibliographic_titles":[{}]}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"P/T Petri nets and their extended models have been widely used for modelings, analyses, and verifications for discrete-event dynamic systems in various field. It is one of features that P/T Petri nets are analyzed by state equation. Generators for nonnegative integer homogeneous solutions(i.e., T-invariants) have been deeply studied, but minimal solutions for nonnegative integer inhomogeneous solutions have not been discussed in detail. While the augmented system Ax = 0m×1(A := [A,-b]) of state equation Ax = b has the well-known generators, then we can derive particular solutions of Ax = b from elementaly nonnegative rational T-invariants for Ax = 0m×1. In this paper, fundamental and algebraic properties of T-invariants and particular solutions for both Ax = 0m×1 and Ax = b ≠ 0m×1 are discussed.","subitem_description_type":"Abstract"}]},"item_10002_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.57375/00000932","subitem_identifier_reg_type":"JaLC"}]},"item_10002_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"福井工業大学"}]},"item_10002_relation_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"TF00009391","subitem_relation_type_select":"NCID"}}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"18844502 / 18844456","subitem_source_identifier_type":"ISSN"}]},"item_10002_version_type_20":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"松本, 忠"}],"nameIdentifiers":[{"nameIdentifier":"11692","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"恐神, 正博"}],"nameIdentifiers":[{"nameIdentifier":"11693","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"茂呂, 征一郎"}],"nameIdentifiers":[{"nameIdentifier":"11694","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Matsumoto, Tadashi","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"11695","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Osogami, Masahiro","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"11696","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Moro, Seiichiro","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"11697","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2023-04-12"}],"displaytype":"detail","filename":"kiyou3904.pdf","filesize":[{"value":"6.2 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"kiyou3904.pdf","url":"https://fut.repo.nii.ac.jp/record/938/files/kiyou3904.pdf"},"version_id":"eaeb3ee9-b04a-41f5-8950-ac4d83dd36e7"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"非負整数","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"P/Tペトリネットの状態方程式の非負整数解の代数的構造に関する基礎的考察","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"P/Tペトリネットの状態方程式の非負整数解の代数的構造に関する基礎的考察"},{"subitem_title":"Basic Considerations on Algebraic Structure in Nonnegative Integer Solutions for State Equation of a P/T Petri Net","subitem_title_language":"en"}]},"item_type_id":"10002","owner":"2","path":["1"],"pubdate":{"attribute_name":"公開日","attribute_value":"2009-12-01"},"publish_date":"2009-12-01","publish_status":"0","recid":"938","relation_version_is_last":true,"title":["P/Tペトリネットの状態方程式の非負整数解の代数的構造に関する基礎的考察"],"weko_creator_id":"2","weko_shared_id":-1},"updated":"2023-06-20T14:22:14.942944+00:00"}