{"created":"2023-06-20T13:43:07.955227+00:00","id":799,"links":{},"metadata":{"_buckets":{"deposit":"0cfd38df-54b9-40c9-8805-5ceb7ce7e0f9"},"_deposit":{"created_by":2,"id":"799","owners":[2],"pid":{"revision_id":0,"type":"depid","value":"799"},"status":"published"},"_oai":{"id":"oai:fut.repo.nii.ac.jp:00000799","sets":["1"]},"author_link":["11249","11248"],"item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1993-03-20","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"23","bibliographicPageEnd":"271","bibliographicPageStart":"269","bibliographic_titles":[{"bibliographic_title":"福井工業大学研究紀要. 第一部"}]}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"ロピタルの定理†は, 分数型の不定型の極限を計算する際に大きな効力を発揮するので, ほとんど全ての微積分の教科書にとりあげられていて証明もなされている.内容は本文に記すが, 分母分子が共に0に収束する場合にも, また分母分子が共に∞(または-∞)に収束する場合にも, 成立する定理である.多くの教科書ではコーシーの平均値の定理を使って証明しているが, そうすると上の二つの場合の取扱いが大きく異なる.この論文は双方を統一的に証明することを試みるものである.","subitem_description_type":"Abstract"}]},"item_10002_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.57375/00000793","subitem_identifier_reg_type":"JaLC"}]},"item_10002_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"福井工業大学"}]},"item_10002_relation_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"TF00009252","subitem_relation_type_select":"NCID"}}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2868571","subitem_source_identifier_type":"ISSN"}]},"item_10002_version_type_20":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"雪本, 義人"}],"nameIdentifiers":[{"nameIdentifier":"11248","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"YUKIMOTO, Yoshito","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"11249","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2023-04-12"}],"displaytype":"detail","filename":"KJ00000201635.pdf","filesize":[{"value":"148.5 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"KJ00000201635.pdf","url":"https://fut.repo.nii.ac.jp/record/799/files/KJ00000201635.pdf"},"version_id":"b965cc99-c20a-4abf-bc39-a40bb39ff4e8"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"ロピタルの定理の一証明","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"ロピタルの定理の一証明"},{"subitem_title":"A Proof of The Theorem of L'Hopital","subitem_title_language":"en"}]},"item_type_id":"10002","owner":"2","path":["1"],"pubdate":{"attribute_name":"公開日","attribute_value":"2009-04-10"},"publish_date":"2009-04-10","publish_status":"0","recid":"799","relation_version_is_last":true,"title":["ロピタルの定理の一証明"],"weko_creator_id":"2","weko_shared_id":-1},"updated":"2023-06-20T14:25:02.151675+00:00"}