EXTREMAL PROBLEM ON THE B-S BOUNDARY OF
A CERTAIN BOUNDED COMPLETE CIRCULAR DOMAIN
AND ITS APPLICATIONS

SHOZO MATSUURA*

1. Introduction. As a certain generalization of the Riemann mapping
theorem in C, Kubota[4] showed that there exists an extremal mapping f
€F (D)=Hol"(D,B,) unique up to unitary linear transformations on C", such
that, for a fixed teD,

| J7(t) I=sup{1J (L) 11 feF (D)},
where D, B, and J, denote a bounded symmetric domain in C", the unit
ball B,(0,1) and the .Jacobian determinant det(df(z),/dz), respectively.

This result is a solution of the Maximalteiler problem due to
Carathéodoryr1]l. We should like to generalize the theorem of Maximalteilers.
To go on with this purpose systematically we will start from the minimal

problem on the Bergman-Shilov boundary of a certain bounded complete

circular domain.

2. Preliminaries. Thro‘ughout this paper, let ¥ in C" be a bounded
complete circular domain with starlikeness tMcM for t=re'®(0<r<1) and BM

denote the Bergman-Shilov boundary of M.

It is known that, for a multiindex a=(a,,--,a,) with |al=2a,,
1=1
{2%=2,%1..2,%| 2z='(2,,-+.,2,), |lal=0,1,2,.-) make an orthogonal system

on BM and dim{z®||a|=k}=,,,.1Ce=N(k). Therefore we have an orthonormal

system ¢={¢,;> on BM, where ¢;(j=j (k)=1,2,--,N(k)) are homogeneous
polynomials of degree k(k=0,1,2,--)(see [2]). Further any function

feHol (M) has the uniformly convergent series expansion f(Z)=2 P,(2),
k=0
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where each P, denotes a homogeneous polynomial of degree k. Therefore, put
00 N(k) oo N(k)

Hy (BH) =<f=kZ=O§:1 @y, €HOL (M) | goao @y, 12<00)

then H,(BM) denotes the L,(BM,dc,)-closure of A(M)=Hol (M)~C(M). The
boundary value f({) ({eBM) is defined by Liﬂ_ofr([) ([ (O)=f(rg), O<r<1)
which exists a. e. on M. H,(BM) makes a separable Hilbert space with re-
spect to a 'base ¢((oox1)type) since for any feH,(BM) the Parseval's
equality holds.

For two (nx1) column vector functions g and h in L,(BM) the inner
product (g.h)gy is defined by JBMQ(C)h"(()do(, and also the scalar
product <g,h>g, is defined by Tr(g,h)g, with the norm ||g|}5M=<g,g>BM1’2

where A* denotes the transposed conjugate matrix of A.

3. General minimal problem in H,(SM). Let L, be any bounded linear
functional matrix evaluated at te¥, say, L,=(1,8,),., OF =(1,0, )a-c
etc., where 0,=0/0z=(06/02,,--,0/02,) and 98, ,(-)=0,(-)u for 2
=t(z,,--,2,) and u="(u,,--,u,)eC"-{0}.

Now, we consider a subclass of H," (M) as

T(BMI (K, L)) ={feH," (BM) IL,[=K)}
for a given constant matrix K of the same type of L,. Let m(K‘L)G denote
the minimal (nx1) vector function such that [1G-m g )%l gu=Inf{IG-f1 gy
feH,"(BMI (K, t))) for a fixed GeL,"(BM), and A ,,° denote the minimal

value IIG—m(K’” Hﬂ“ .

THEOREM 1. Put L, ¢=¥ and B=(G,¢)gy((nxco)type) for fixed K and
Gel," (BM), then we have

(3.1) m . L)G(z) ={B+ (K-B®) () ‘W’*}(/)(z) eH," (BM) (K, t))
and
(3.2) Ak, 1) =1Gll g~ Tr{BB*~ (K-BW) (4*) 1 (K-B¥) ¥},

where $*Y is positive definite.

Proof. For a sufficiently large number L, the restricted class
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{feH,"(BM| (K, 1)) I 1G-Sl gusl) makes a compact family. Then there exists
the extremal mapping meH," (M| (K, t)) such that ||G-m||5,,=inf{|[G~fnﬁM|
feH,"(BM| (K, t)) ). Noting that m has its Fourier expansion A¢ with the
(nxoo) matrix coefficient A=(ay;)=(m,¢) gy, DU
J(A) =1IG-m|l gy °~Tr{ (AP-K) A+T* (AP-K)*}

with the Lagrangian multiplier matrices A and I” of the same type of K.
Noting that IIG-mlig,*=1Gllgy°~Tr{AB*+BA*~AA*}, from the Euler's conditions
dJ (A) 79a,,=0 and OJ(A)/(')&U-:O we have A-B= (¥A)°=(¥T')*. Since K=L,m
=A¥= (B+ (PA)*)¥, we must have A*="=(K-B¥)(¥*®¥)-! with a positive
definite Hermitian matrix &% from the existence of the extremal function,
that is, m={B+ (K-B®) (&) P YpecH,™ (BM| (K, t)) .

In order to confirm that m gives the minimized mapping just required, put
[=f-m far any feH,"(BN| (K,t)) and satisfies Tr(G-m,f)g=0.
Therefore, we get G-/ llgy"=11G-mll g%+ f 1l g2 1IG-mll g%, Where the equality
holds only for Iflg=0, i.e.. f(2)=0. This shows that m=m  .,C- Finally,

we have the minimal value A ¢ by direct calculations.
COROLLARY. Put, m<K't)GlG-O=m(K.” and "m(K_L) “anz:)\(‘(.t), Z.hen we ha?)e
(3.3) Mg oy (2) =K (@)W (2)eH," (BM (K, t)),

(3.4) Aoy =Tr (K (&) K) .

LEMMA 1. (1) Put S,(z,t)=¢*(t)¢(2), then we have

(3.5) O0<Sy(z.2)<o0, 2eM,

(3.6) Sy(-,2)eH, (BM) with Sy(-,2)=Sy(2, )", 2eM,
(3.7 F2)=(f() . Sul-.2))pu, feHa (BM), 2€M,
(3.8) Sy(2,0)=5,(0,0)=1/vol(BM), z2eM.

(2) Put Hy(z,t)=0,"0,l08S,(2,t)={(S5yx0,"0,5,-0,"Sux0,Sy) /Sy*} (2., 1),
then we have
(3.9) Hy(2,0)=H,(0,0)=vol(BM)8,0,S,(0,0)=vol (BM)B,"B,, zeM,
(3.10) H,(z,2) is positive definite for zeM,
where Bz ((nx1)type) denotes the linear part of ¢.

— 287 —



Memoirs of Fukui University of Technology, Vol. 26, Part 1, 1996

Proof. (1) Let K=1=f(t)=L.f, then from (3.4) we have O<A .,
=1/S5,(t,t)<eo, which gives (3.5). On the other hand, m(l.“=Su(z Y /St L)
belongs to H,(BM| (1,t)), which gives S, (-,t)eH,(BM) . Sy(-,2)=S,(z, )
is obvious. For any f=3% a’;;¢,;eH,(BM) wehave (f( ).,Sy(.2))p=S(2)
from (¢p;, Qe ;- )5,,=<3(,Z]::](k,j, y=1 for (k,j)=(k",j’) and =0 elsewhere. Since
S5 2.0)=5,{0,0)is clear from the definition of S,;, then S,{(0 0)=(S,(,0),5,(.0)) gy
=5,2(0,0)vol(BM) from (3.7), which shows (3.8).

(2) By the definition of H,, (3.8) and 0,%9,5,(0,0)=B,*B,, we have (3.9).
For K=(0,1)=L,f=(1,0, 4),..f., we have, from (3.4), O<A x ,,=(Su(t,t)
cutH, (t, t)u) t<oo for all ueC"-{0), which gives (3.10).

REMARK 1. S,(=2,t) and H,(z,t) are called the Szegd kernel and the
Szeg0 tensor on ¥, respectively. The Szegd projection (Pf)(2)=(G( ),
Su( .2)) gy for GeL, (BM) is a Hilbert space projection of L, (6M) onto H,(8M).
In particular (Pf)(2)=f(z) holds for feH,(BM)(see (3.7)), which is called
the reproducing property of S, on H, (M) .

LEMMA 2. Let HZ"(5M|R) denote the normalized subclass of H,"(FM)
with K=(P,Q)=Lyf=(1,0,),.of . where PeC" and |detQl|=1. mg and Aj
denote an HZ"(BM!I?%minimal mapping and the Hz"(ﬁM|!~()—minimal
value ngllﬁuz, respectively. Then we have
(3.11) mg(2)=Qqz, Qu=U(detH,(0,0)) V2"H,'“?(0,0), UU=E,,
where E, denotes the unit matrix of order n, and
(3.12) Ag=nvol (BM)(detH, (0,0)) /",
where H,'”? denotes Vg*diag (i, -, ln) Vo for H,(0,0)=Vy'diag (4,2, - -
U Z) Vg with py2- -24,>0 and Vy*'Vo=E,.

Proof. From Corollary for K=(P,Q)=Lof=(1,08,),.0cf, we have

(3.13) m g oy (2) =P+Q(0,*0,5,(0,0) ) 10,*S,(2,0)=P+Qz
since 8,my ¢y (2)=Q holds from 0,'0,S,(2,0)=0,"3,5,(0,0)=B,"B,, and also
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we have, from (3.8),
(3.14) Ay oy=vol (BM) (1P I1?+Tr{QH, ' (0,0)Q y2vol (M) Tr{QH, *(0.0)Q")
ffor all PcC™ and @ with |det@Q|=1, by making use of the diagonal
representation QH,,“(O,O)Q‘=V*diag(/\1. LAV, VV=E | we have

Tr(@Hy ! (0,0)@3=3 Azn ([] 20)™7=n (dett, (0,0)) 177,
where the equality holds onlyl for /\1=l- c=A,=A=(detH, (0,0))" ", ie.,
RoHy 1 (0.0)Qy"=AE, with Qu=UA,,,H,'"%(0,0) =U(detH, (0,0)) 127"H,1"2(0, 0)
U'U=E, . Hence we obtain (3.12) and (3.11) from (3.14) and (3.13), respectively,

since A . o,2vol (BM) Tr{QuH,~1 (0,0)Qu*y=nvol (BM) A=Ag.

4. f-canonical domains. The image domain M of M under mg is called an

HZ“(;S’MIR)—minimal domain and my is called an HZ"(ﬁfo()—minimal mapping.

THEOREM 2. For M with Szego kernel S,, the following statements
are equivalent each other.
(4.1) M itself 1s an Hz”(BMllN()—minimal domain.
(4.2) M has Prop(B): H,(0,0)=b2E,, b>0.
(4.3) M has Prop(B'): ({.{)gy=d’ zEn, b’ >0 [4].
Let Prop(f) be the general term for above conditions, then M
with Prop(f) (or a B-canonical domain M) satisfies
(4.4) mg(2)=Uz, U'U=E,,
(4.5) Ag=nvol (BM) /b%=nb’ 2.

Proof. (4.1) is equivalent to @g2=2, i.e., @y=E,, which gives (4.2) from
(3.11) and vice versa. Let B,z be the linear part of ¢, then we have E,
= (B¢ . B10) gu=B1 (¢, Q) By, e, (¢.{)gu=(B1*By) 1=vol (BM)H, ™' (0,0)
=vol (BM) b~?=b’ ?E, from (4.2) and (3.9). This gives (4.2)<=>(4.3). (4.4) and

(4.5) are given by Lemma 2.

LEMMA 3. Let M be a B-canonical domain with the minimal value

Az (=limgligy®) . then we have
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(4.6) 1J,(0)1%2<1, FeH,™ (BMIIfllgusAk)
where the equality holds only for f(z)=Uz, U*U=E,.

Proof. For any jff&"(BM!HfmgyzéAk) with K=(P,Q)=Lof=(1,8,),.of, we
have, from (3.14) and (4.2),
Az gn’2A (k 0y 22 ((0.@) .0y =VOL(BM) TT (QQ") /bZ2Ax1J,(0)1 %/,
which gives (4.6). The equality of (4.6) holds only for 1JI(O)|=1 and

consequently | fllgy°=Ag. Therefore from (4.4) we obtain f(z)=Uz, U'U=E,.

DEFINITION. If a bounded domain D in C" satisfies

(4.7) BD<0B, (0,p5) , pp=inf{piD<B,(0,p)},
it is said that D has Prop (@) with respect to O.(see Remark 2 (1)).

THEOREM 3. Let ¥ be a f-canonical domain with Prop(8), then we
have
(4.8) 1J,(0)I<1, feHol™(M,B,(0,py)) .

If g belongs to {feHol"(M)|[Jf(OMgl}, then we have
(4.9) PusPg (uy -

The equalities in (4.8) and (4.9) hold simultanaously only for

unitary linear transformations.

Proof. For feHol™(M,B,(0,py)) we have, from (4.3) and (4.5),
Hfuﬂuzgfﬁupnzd6(=1W*@T,()ﬁ“:nb’Z:A;, which gives (4.8) from (4.6), where
the equality holds only for f(z2)=Uz, U'U=E,.

Suppose that g belongs to Hol"(MtlJf(O)lgl, [ (2)y=Uz,0'U=E,), then
g(M)-B,(0,p,) =P (g does not belong to Hol™(M,B,(0,p4))), that is,
Pu<Lgmy - Pu=Pgmy holds only for g(z)=Uz, UU=E,.

REMARK 2. (1) Any starlike and homogeneous bounded complete circular

domain N is equivalent to a p-canonical domain M with Prop(8) under some

linear mapping (see Lemma 2, (4.4) and (2,4)).
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(2) (4.9) in Theorem 3 gives a geometrically simple characterization such
that a F-canonical domain M with Prop(8) is the most condenced domain in
the {feHol™ (M) | |J,(O)|=1}—equivalent class of domains.

(3) Any bounded symmetric domain Y, say, a classical Cartan domain, is
a homogeneous convex complete circular domain. The explicit formulas of the

Szegd kernel Sy (z,t) and the Bergman kernel K,(z,t) are given in [3]. A

B-canonical domain Y of Y has also Prop(d)(see (1) above).

S. Maximalteilers. For two bounded domain D and D’ in C" with Oe¢
D~D’ , we consider a class Hp={feHol™(D,D") 1 f(0)=C}. If f is an
extremalmapping which satisfies |J;(O)|=Sup{|J,(0)| feHy>, then ?(D) is
a Maximalteiler in D’ . Now, we should like to generalize Theorem 15 given
by Carathéodory[ll on the Maximalteilers for Hol"(P,,B,(0,1)), where P,
denotes a polycylinder.

The following Theorem 4 is immediately obtained by Theorem 3.

THEOREM 4. Let M be a p-canonical domain with Prop(8), then M is
a unique Maximalteiler in a ball B,(0,p,) up to unitary linear

transformations . (cf. [11 Theorem 15).

THEOREM 5. Let D be a biholomorphic image of M with homogenetily,
then there exists an extremal mapping f in F(D)={feHol™(D,B,(0,1) |
f(t)=0, teD), unique up to unitary linear transformations in C",
such that
(4.10) | J7 (t)1B=sup{|J,(t)I | feF (D) }=detTy(t,t)/detT{(0,0),
where M=F (D) (cB,(0,1)) is a B-canonical domain with Prop(d) and
also f is given by the curvilinear integral such that
(4.1 f(z)=UT;,-“2(0,0)UOTD-“2(L,t)rTD(z,t)dz, UU=E,,
where Tp(z,t)=0,"0,logKp(z,t) denotes tthe Bergman tensor with

respect to the bergman kernel Ky(z.t) of D and U(resp. U) is an
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arbitrary(resp. a certain) unitary matrix.

Proof. There exists a biholomorphic mapping g of D onto M with g(t)=0

for any ¢ in D. Since D is mapped onto any Maximalteiler ¥’ of B, (0,p, )
by Ulpy-g (&y In (3.11) and U'U=E,), then fzp,,,"‘UQOog maps D onto any
Maximalteiler ¥ of B, (0,1) with f(t)=0. Noting that n=p, 'Q,-g is a bi-

holomorphic mapping of D onto a Maximalteiler 1;’1’ of B,(0,1), we have
412y Tp(z.t)=(0.7(t) ) Ty(n(z) . n(t))0,n(2)=(8,7(t)) Ty(0.0)d,n(z)

from the biholomorphic relative invariance of the Bergman tensor T,(z.t)

and Ty(n(z),0)=T4(0,0) for a complete circular domain ;7 Hence we have
(4.10) from (J7(t) 1%=1Jun (L) 12=1Jy(0) 121J,(t) 1%=1J,(t) |®=|detd,n (z) |?

and (4.12). Further, we have 0,7 (2)=T;'(0,0) (8,7 (t))* ' Ty(z,t)=

=Ty V(0,00 UgTp M2 (t, t)Tp(2z,t) from (4.12). Therefore, we get (4.11) from

- z
the curvilinear integral f(z):Un(z)==UJ d,m(2)dz with n(t)=0.
t
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