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Abstract
The linear perturbation of the Vlasov equation is solved in the case of electromagne—
tic perturbations in a general coordinate system. The adiabatic component of the
solution has a new term induced from the diamagnetic effect. The Kkinetic solution
is found to reduce the electromagnetic gyrokinetic solution in the low frequency limit.
Some characteristics of non—abiabatic component of solutif)n are examined for both

circulating and trapped particles.

§ 1. Introduction

In a previous report !’, the linear perturbation of Vlasov ejuation has been solved by
introducing a propagator in a general coordinate system in the electrostatic approximation.
Inrealistic comfined plasmas, the magnetic perturbations become incleasingly important
for various plasma stabilities and plasma transport. In this report, we develop the
method to solve the linear perturbation of Vlasov equation in the case of electromagne—

tic perturbations by applying the propagator used in the electrostatic case !’.

§ 2. Kinetic Solution with Electromagnetic Perturbations

We begin with the Viasov equation for plasma distribution function f(x,v,t)
9 —0 e
(at+L)f(x,V.t) 0, (1)

where the operator L has been defined in the previous report L When it is expre-
ssed in the form, L =L + 1, the ensemble averaged part L is the same as Eq. (5)
in Ref.1) .

In the case of electromagnetic perturbations,the perturbed portion has magnetic perturb—

ations:

~

~ iw
L =
C

V(_v¢+_;§+ %;XXE) 9 e (2)

€
m av,

where B =< XA is the magnetic perturbation and A is the perturbed vector potenti—

al. We will use the same notations as used in Ref.!’. With this operator T .the linear

perturbation of Eq{l) can be written by
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T=—TTT. (3)
where the solution operator T Which is equivalent to the propagator,is defined by
T = ftdt’exp(fdt“f). ............... (4)
The unperturbgd-zquilibrium solution f is given by the same form as given by Eq.10)
in Ref.(1). Making use of the eikonal representation for the perturbation: f = f e x p
(=i wt+iS(x)), and decomposing A in the form?’
A=b¢+irvS—iobXvs, e (5)
we have the perturbed magnetic field in terms of ¢,r and o:
B=V¢Xb+iViXTS—iTVoX(bXTS). cvrrreeeeeenn. (6)
The cross product of Eq{6) with v = Vi1 b+ v.yields

YXB=v V¢ —(v..V¢)b+i(v,vS)Vr—i(v.v7)vS
— iV, bXVUS)Vo+i(v,Vo)bXTS, roeeeme (7)
Introducing Eqgs.(5),(6) and (7) into Eq(2),we have the source term for Eq.3) in the
clectromagnetic  perturbations:
dF 1 LF 1 éF

tT:i [—(v.v3) (24

— (viibv+yvs v)
de B opu B opu H ’ ¢

vHVXDb i OF 1 OF
(V.. VF)+—w {A,V —t— —

v ,2Q c de B apu

1 OF _ A, VXb
—— —A(vub+vd)t+t———(v. ,vF))

B su vi2Q

1 6F (VXB)VXb
— —— — VXB(vi1b+vd)— (V.,VF)].
CB 6/1 eV_LZQ

Equation (8 without magnetic perturbations ’5 and B, i, e .the first,second and third
terms reduce to the electrostatic result (Eq.06) in Ref.(1)) .

Making use of the relationstA.V=v ,¢ +i 7 V.vS—=io(bXvVS)V, A.b=¢,
AV=irwe—i0(bXvVSs),V,, A.VXb=—ir(vSXb),V+ig (V,vS)

and the formula for the operator T:

T(V.vIg=F-12¢ (©)

’

we obtainfrom Egs.(3) and (4),a representation for T :
—e [ (9F_ 1 0F, ~ v, v dF
?_m L (é’s+B aﬂ) ¢ CB Jaﬂ FU
1 @F

—%T [ {i(w—wd+iv”bv)B W—iQ} V+iwU],
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where Q.U and V are defined as follows: Q=wd F/ 3 e (VS Xb)(v,XVF)/
(Q vlz)v

u= ‘(ZQVF)(VS vXby—(bXvS)(vXb)ad), -

V=3 -Yug+ 8y (bxvs)-T(y.vs). e 12

The terms in the first square brackets in Eq(0) are adiabatic terms which is indepen—
dent of @. The quantity U,which is new,s induced from the perpendicular components
of the vector potential and the diamagnetic effect.

We now consider some characteristics of the propagator T in a toroidal geometry ta-
king into account the effect of global toroidal gyromotion?®’for circulating particles.In an
axisymmetric tokmak,the eikonal function has been given by 4 S=—n(0 —J/ﬁq d x ).
Even in the zxisymmetric toroidal surface,If we go along an magnetic field line on the
toroidal surfacethe symmetry is broken down. For example the pitch length of the field
lined is shorter in the inside than that in the outside of the torus. The safety factor
in this case may be written as q =qo(l— ¢ (1+A)cos x)and the eikonal function,
becomes S=—n (8 —jq od X + amcosx ),where qo is the safety fuctor in the
straight cylindrical geometry, and a==e¢ m(1+A). The second osillating term in S
represents the global toroidal gyromotion of the field lines. [f we take into account
this toroidal gyromotion, together with the effect of small scale Larmor gyromotion,

the propagator may be written in the form

eilk-k ) @ilPPx

T=3% Jo(am)Js(an) = Ju(a)Je'(a)

pLP e W —wd— 1 v bv—kQ
............... (09
where J» (an) represeat the effect of global toroidal gyromotion,while Jk (a) rep—
resents the effect of small scale Larmor gyromotion. Without the toroidal effect, a »— 0,
Eq i3 reduces to one derived in Ref.(1). For the sake of simplicity,we will neglect ] »
(aw=) in the followings.
Substitution of Eq{d without J into Eq(l0,we have

e OF , 1 8F v, oF i, VoaF
= ¢ aE+B ou C¢B a/l+U+2 Julure cB d u

—};Zk Jka‘e'““k')C(w“(Dd—‘iV11b.V“‘kQ)'l
(k2 2F
B op

—

+Q)V+1(1)U}] ............... (14)
§ 3. Gyrokinetic Solution

If we average Eq.l4 over the gyrophase angle S for the low frequency limit @ <{<Q

taking only k =0 in Eq{l4,we have
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- oF 1 0F vy, ,1 O9F _

(=% ¢ GetB oy ¢ St U Te(a)(V—h),
............... (15)

hii((“—-(”d.—iVll—b.v)’lév’ ............... (]6)

The averaged quantities are given as follows: Q=w 6 F / 8¢ - S Xb,vF 7Q,
V(¢ r"C“</v)J o(a ) Vci vS (o+7r))i(a),

. (7f+(1)j; -
L Soeg (VIPVS).

Fauationdohs - the gvrokinetic solution for electromagnetic perturbations.As compared with
the gyrokinetic solution given by  Antonsen et al2’,we have the diamagnetic contri—
bution Uand the contribution from 7 in U and V. The function h given by Eq.16)
correspnds - to the hin Ref. (2),which was derived iteratively from the Vlasov equation
- entirely different manner.

Here we will examine some  characteristics  of the solution h which plays an import—
ant role m plasma kinetic theorv. The inverse differential operator can be transformed

to an antegral operator by the rule:
(}‘+ddl)~— 1o Jra jdl'e Jeare L (17)

Applyimg this formula (9 for BEqdl9 with b.v=d.,d I ,we have representations h¥*
~
corresponding to vy 0
hI(\)WW.OIII(\l\‘) hi(X())iJ/\dX'ei”(Xh‘.) (Ai‘B), ......... (]8)
whore  the field line length 1 is transformed to the poloidal angle—like variable

NoLONxT) s Rglw —we) [ v ldx, A=RqQ(Jo(a)g+J.(a)|vs | (o +7)

~

¢) vy and B=qRQJi(a)¢  c.
For passing  particlesithe periodicity condition h* (x o+ 2 7 )= ht(x o) yields the sum

- S S ; , I U
h h wsin(lo,,ﬁ“Z)Sde {IAK, (x, x")+BKy(x,x ")} (19

where  the kernels K. and K, have been given by

ccos( I (x,
I (x

K,=
: Leos(

)
)= 10/2)
)

)+ 1o/ 2 )forx ' > x,
)— 1o/ 2)forx ' < x.

L= o sin(I(x,x"
© Ysin( I (x,x"

......... (20)
The difference is written in the form
- - 1 B ' ’ 1 L T S
h~ +h “ﬁ_ﬁsm(lo/Z)jgdx {Aks(x, x ")+ iBKs(x,x ")} Ay

where T.=1(27,0)=2r(w—we) w: and the average for the circulating parti—

cles 1s defined by
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w4 dl wd/§,_dl_ ......... ©2)

T T vl 1V
The sum given by Eq(9 is used for the even moment integral with respect to v 11
such as the perturbed density,while the difference given by 32ql) is used for the odd
moment integral such as the evaluation of perturbed current. At the resonance condition,
sin(Io/2)=0 or 1 o=2mp,Eqgs.(19 and @) have the singularity. At this resonance
condition,the kernels become continuous:Ka(x,x')=(-1)"cosI (x,x ') and Ks(x,x")

=(-1)"sinI (x, x *).In the fluid limit, a << 1,in particular,the solution (19 is simplified:

Ziwg -
h*t+h =—"P X
sin( 10/ 2 )Q cosT (x,x")

We now derive the solution for trapped particles by imposing the continuity condition

@d
w

G e @)

at the turning points x =x+:h*(x+)=h (x+) and h'(x+)=h (x-). With these
conditions, we have the solution

2

h +h7:sinl

IJ dx’ {iAKl(X,X')—BKz(X.X')} ............... (24)

where the kernels K, and K2 have been given by °’

Kl:[cosl(x',xdcosl(x,x-) ‘ :[sinl(x',x+)cosl(x,xr)forx’>x,
lcosI(x',x-)cosI(x+,x) sinl (x’, x-)cosT (x,x+)forx’<x,

and 1 ,=1(x+,x-)=2rn(w—ws) @ with o)u:27r/j;dl/l vi1 | . The diffe—

rence can be obtained by the same manner making use of the formulae:

sinl (x',x -)sinl (x+,x)+sinl (x,x’)sinI =sinl (x+,x")sinl (x,x-),

cosT (x,x")sinl 1—cosI (x',x -)sinl (x+, x)=cosI (x+ x")sinl (x,x-),

in the form

X +

2 dx’ {AKs(x, x ")+ iBKs(x, x ")},

h*+ h =—
sinl 1J «

where the kernels K3 and K4 have been defined by

Ka"—’

cosI (x+,x")sinl (x -, x) sinl (x+, x")sinl (x,x-)forx’>x,
. 4 = ‘
[cosl(x’,x-)sinI(X+,x) [

sinl (x+, x)sinl (x',x -)forx ' <x,
At the resonance condition,sinl ;= O these kernels K, and K2 become continuous as
in the case of circulating particles. Near the resonance, I 1= 7 p,in the fluid limit,

a < < 1 the solution @4 is simplified in the form

h++h_:2n’CO§I(X’X+)Qwdcosl(x’x_)¢ ............ (25)
sinl ywo )

At the resonance condition, I ;=1 (x+, x-)=m p.function I (x,x -) varies form O
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o m p as x varies from x - to x+. Since & I (x, x )/ dx=Rq(w—w,1) | vii]|,
from the definition, 81 / 9 x tends to infinity at the edges x = x4+. This means that

I (x,x-) increases very sharply near the edges. x =x:. For p=0, I(x,x-) <<
™,/ 2 and we may approximate by cosl (x.,x-)~1.

For p # 0 [from the definition of I (x, x -),we have

pweo 2
[(x,x-)= :
(X X ) Wt (2820)}’2

{K(k)=F(k,a)},

where p w, > >wa4 has been assumed, o= ¢ /¢ ,K and F are the first kind co—
mplete and incomplete elliptic functions,respectively, k 2=(1— 2o+ & 4 0)/(2 ¢ 24)
and a=sin"'(k 'sinx /2).

For p =1 ,the function cosI (x, x -) becomes odd with respect to x and its integral
over (x -, X+) vanishes. Therefore,we have no p =1 resonance contribution in Eq (9.
For p = 2 resonance,cosI (x, x -) becomes evenand the average integral in Eq.®),in
this casedoes not vanishes, i . e .,the second harmonic resonance may have some contri—

bution in Eq.(%).

§ 4. Summary

We have solved the linear perturbation of Vlasov equation with the full electromagne—
tic perturbations in a general coordinate system. The adiabatic part of the kinetic
solution has a new term which is induced from the perpendicular components of perturv
edvector potential and the diamagnetic effect. When averaged over the gyrophase angle
in the low frequency regime, the kinetic solution is found to reduce the electromagnetic
gyrokinetic solution. Approximate forms of the gyrokinetic solution have also derived

for both circulating and trapped particles.
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