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Three-Particle Correlation and the Off Energy-Shell Self-Energy of
Excited Particles in a Fermion System of Hard Spheres

S.Yamasaki * and T.Yamanishi -

Abstract .

The energy shift in the ground state system of hard sphere fermions is studied with particular
emphasis on the off energy-shell self-energy effect of excited particles induced by three-particle
correlation. The energy shift is known to diverge when one attempts to analyze it in terms of K-
or G-matrix which describes the two-particle correlation successfully. Use is made of a new method
which deals with the hard sphere interaction in terms of effective potential. The energy shift of
interest is expressed as a convergent integral which varies as a%loga for small values of the sphere

radius a. The contribution to the integral of order a* is also identified.

Introduction

Strong repulsion between the particles at close distance in quantum fluids prevents direct
application of the linked cluster expansion method which offers the basis for theoretical
study of quantum many-particle systems.') The K-matrix and G-matrix methods which
have been developed for the study of fermion systems avoid this difficulty by taking account
of repeated collisions of two particles.? 3) They are based on the infinite paftial summation
of perturbation terms in the energy and other quantities. They can give reasonable results
in a way similar to the case of two-particle system in free space or scattering system. In fact,
however, the infinite summation method does not carry out infinite sum in the true sense
of the word. Its basic assumption is that the perturbation series for energy, for example, is
analytic at the vanishing value of the potential strength, and that the series can be continued
analytically from the weakest potential to the actual potential of interest.

On the other hand, the nonanalyticity of the whole perturbation series at the vanishing
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value of the potential strength has been known for long years. The series can at best be
only an asymptotic series. ) % Thus one has to be content with the asymptotic approximation
confining himself to weakest interaction, if he respects the whole series. Or one can only hope
that nonanalytic part of the whole sum to be sufficiently small and that the main part admits
analytical continuation. The nonanalyicity is expected because the convergence of two series
for interactions of equal strengths but of opposite signs are governed by the same radius
of convergence, while a large system would collapse if the interaction is attractive. Baker
attributed the vanishing radius of convergence in nonrelativistic many-body problems to the
fact that the number of perturbation terms increases quite rapidly — like combinatorial
factors — as one proceeds to higher orders.

One might expect that the interaction of three particles in a fermion system can be
described as a combined effect of two-particle correlation described by K- or G- matrix as
far as the particles interact via two-body force. Attempts along this line of thought have
not been successful, and one is met with ultraviolet divergence in the calculation of three-
particle correlation energy.® ”) In particular, Efimov has shown that even a mild potential
leads to divergence. From the divergent behavior of some integrals (the precursor terms)
representing the three-particle correlation energy, he expected the energy would involve terms
of order (kga,)*log(koas) in dimensionless scale, where kg is the Fermi wave number, and
a, is the s-wave scattering length. As a,, which may serve as a substitute for hard sphere
radius, is an analytic function of the potential strength, Efimov was led to nonanalytic
result by assuming the possibility of analytical continuation when he introduced cutoffs to
divergent energy integrals. Note that, as far as one confines himself to the correlation of
three particles, the number of higher order perturbation terms increases only exponentially,
not like the combinatorial factors. Thus, we recognize that Efimov’s result poses a difficulty
more serious than considered by Baker.

There is an old standing hope that if the strong repulsion, in particular the hard sphere
potential, could be treated appropriately, the attractive part of the interaction would be
dealt with fairly easily. Thus, Lee, Huang and Yang developed the method of pseudopo-
tential by generalizing the method due to Fermi.® 9 The method was not very successful
because the pseudopotential admits the penetration of the wave function into the interacting
spheres. Moreover, the potential is not Hermitian, and can not reproduce a complete set of
eigenfunctions and eigenvalues.

In an earlier work, one of the present authors has proposed a new method for dealing with

the hard sphere potential. 1®) It enables us to express the contributions to the three-particle
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correlation energy as convergent integrals which turn out to be of order (koa)* log koa, where
a is the radius of the hard sphere. A more precise estimation of the integrals opens the way
to the calculation of the many non-precursor terms of order (kpa)* which have been made
obscure by the precursor terms. Here we discuss a typical precursor term in the three-particle
correlation energy, i.e., the energy shift that the correlation causes via the off energy-shell

self-energy of excited particles in a fermion system.

Three Particle Correlation and the Self Energy of Excited Particles

Contrary to the common perturbation scheme, we do not use the potential strength as
the smallness parameter. Our smallness parameter is the hard sphere radius a. In the limit
of long wave length p~! >> a, the wave function 1) for the relative motion of two particles

of mass m in free space can be expanded in powers of pa as

sinp(r — a) sin pr cospr p*a®sinpr
= ~ — Da — “o

or pr or 2 pr

¥

The term of order pa on the right hand side of the above equation can be reproduced by the

lowest order perturbation theory in terms of the effective potential

n2
‘/1 = %6(7' - G,).

The term of order (pa)? in ¥ can not be reproduced by the second order perturbation formula
solely in terms of V;. We need additional potential V, which we treat as the second order
effective potential. The wave function accurate to order p?a? for r > a as well as for r < a
is obtained when we take Vo = V,. This circumstance is not changed, provided kpa << 1,
when the pair of particles are immersed in the background of other fermions and prevented
from scattering into the Fermi sea.

The matrix elements of V; and V, sandwiched between two plane wave states q, ¢’ and

p,p’ are given by

2
(a,4Vilp,#) = (4, 41Vilp, ¥) = "o f(a— ) f(p— #)%(a+d — p~P),

where (2 is the volume of the system being considered, and

_ _ sinQa/2
f@=r@="50"

The factor f(Q) reflects the blocking effect of the strong repulsion on the penetration of

Q=1Q|

particleé inside the sphere. It enters in the integrand in the expression of energy as a form
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factor which prevents the divergence of the integral. In the limit a — 0, f(Q) tends to unity.
But the approximation f(---) = 1 is not justified within the integration symbol when the
convergence of the integrals over the arguments of f(---) are poor. The nonuniformity of
the convergence of energy integrals for small values of a is at the heart of difficulty which
Efimov has encountered. It may cause divergence, if dealt with improperly.

We use V] and V; to study the effect of the three-particle correlation on the energy shift
of hard sphere fermions due to the off energy-shell self-energy of excited particles. The
interaction is assumed to be charge- and spin-independent. The multiplicity of a fermion is
given by p = (25 + 1)(2T + 1), where S and T are the spin and isospin.

The lowest order effect of the three-particle correlation results from processes in which
an intermediate state involves three particles above the Fermi sea. Thus we need to take
account of the interaction in the intermediate state to the second order in V; or to the lowest
order in V,. The energy shift of interest can be written as

fgfb @’ / d’py / d’pa / d°psBy,0,,05,

/d3q9p1+p2—q qf (P — Pz)f2(2q D1 - pz)f2(q—Ps)
[(p1 + P2 — 9)* + ¢* — P} — p3]

EF=w

1-2 [ eps—r9q+rf2(2"' —Pps+4q)
2 T ) 2 N2 .7
m (q+7)°+(ps—7)°+ (p1+ P2 — q)* — Py — 3 — 3

where w = p(p — 1)? and

1 ladl= g>ko
0. g <k
The integral F is convergent. But ultraviolet divergence would result if we let a — 0 in
the integrand so that f(---) — 1. This indicates that large values of the wave numbers of
excited particles, g and 7, are responsible for the main contribution to the integral E. Thus
we can approximate E by

(1) dropping 0p,— 8¢+, in the expression in the curly bracket,

(2) neglecting the hole wave numbers p;, p2, and pg in the energy denominators as com-

pared to g and 7,
(3) neglecting p;, p2, and ps in f(---) as well as in 6, 4,,—4 Which restricts the range of ¢

according to the Pauli principle.

The approximation Ey to E so obtained is

!?712 ’ o £7(0) £*(29) 27‘+ 9)
By = /d3 9 /d 9,, [43psB /d3 (1-5 [&r .
0=y pily, [pafy, [ 255, 27 2 / T +q}
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Fortunately,‘ Ejy can be reduced to a simple integral

2 o . . 2
Ey—w 0Qk§ h*k§ 16k . /dq (smaq smaq/2) (1_

672 2m 9n° ? aq aq/2
thanks to )
2 1
1_—%/d3r flrte (1 — eV,
s (g+r)°+r°+g¢q V3aq

The last expression for Ey can be estimated accurately to order (kga)* by standard calculus.

k3 2k
E’o=w67r2 —2(koa )(\/— )3{—10gkoa
1 V3\ 49 104 3 143
— == = = T og2 - = —_
v — \/_(3607r+6arctan 2)+2O 135log 4log3-!—2160log7}+
Q%#%

= k 2 3l 0.02255
67r om ( a) (—(E) ogkoa,— . 0),

where v = 0.577215- - - is Euler’s constant.
In order to correct for the errors introduced by the above steps (1),(2) and (3) which

have led us to Fy, we rewrite E as -
E = Ey+ Ei + Eyy + B,

and estimate approximately the terms E,,E, and E; which are given by

_ Qhﬁ 3/d3p10 /dp20 /dp30 /dqe [ __/d3 f22r+q) 2}

{9p1+l)2—qf (P~ p2)f*(2q—p1 — pa)f*(a—ps) _ f2( ) f2(2q)}
[(P1+ P2 — @)° +¢" — pi — P} 2¢°  2¢°
h2 4
By =wet [ Epid, / & psB, [ &*psby,

/ds 090p,-+p,— qf (P _P2)f2(2q D1 —Pz)fz(q—Pa)
(P2 + P2 — @)° +¢* — pi — p3]°
/ds { F( 2r q) _ | f*(2r—ps +q) }
(g+7)2+7+¢"  (g+7)+(ps — )’ + (pr+ P2 — 9)* =07 — P} — P}

and

9ﬁ2 Yraoa f*(pr—p2)f*(2g—p1—p2) f*(q—ps)
Ey=w /d 6, [d°p,0 /d [ /d3 6,6 :
2 P1Vp, [0 P2 Ps3 qY4Yp1+po—q (P +p2— 92+ ¢ — p° — P22

/d3,’, 2 (1 - P3_2" 9+5‘)f2(2r_ p32+ Q)2 - —
g+ 7)*+ (ps — r)° + (pr + P2 — q)* — P} — p5 — 5
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The expression in the square bracket in the equation for F;, can be approximated by

2
1__/ f (2r+q) 1 (1 — e~V3ea) \/ﬁaq,
(‘1 +7)+r0 4+ ¢ V3aq 2
while the estimation of Ej, is facilitated thanks to
/ds { f2r+q) f*(2r-ps +q) }
g+r)+r7+¢  (q+r)+(ps—r)+(p1+P2— 9~} —p} 13

| 7*(/R(g,P1, P2, ps)
- Wzl/nga
where

R(q,p1,p2,p3) = 1

The remaining factors f(:-

;— §Q)’ R(qul,p2ap3) >
R(q,p1, P2, ps)

1 1
~(g+ps)’+ Sl(P1+p2 - q)?—p -

0
<0

~ pil.

-) in Ej, and Ej, can be approximated by unity. We put the two

resultant expressions of £}, and E;, together to write

Ey = Ej,+ By
h2 4

16m7r

/dp19 /dp26 /dp30 /dqe

0P1+p2-q \/R q, D1, P2, p3)

{[(p1+pz—q)2+q2—p¥

where \/ R(q, p1, p2, ps) should be read as 0 if

\/—1}
-

— pa]?

R(q,p1,Pp2,p3) < 0.

For numerical estimation of the integral F;, we find it convenient to use as variables of

integration the absolute values of ¢t = p1+pa2, ¢2=t—¢q, u=p;—t/2, and s = q+ps.
Thus, putting
1 1
R=gs+5(d -2 - 38 - 1)
we obtain
kS K2k? 424 g+t VE—t2/4
E, = w__o._ % (koa)* /d ————q- k / dt / dgoqe / duw
0 max(ko,lg—t]) 0
min(tu k(2) —u? = t2/4) q+ko min(ko, /g2 —2u?+(s2—12)/2)
(¢* + g2 — 2u® — £2/2)? / ds s dps p3VR
max(g—ko,29—+/2¢2+2g2 —4u2—12) lg—s|
k3 h2k0 4
. — (koa)*(—0.002293).
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In estimating the correction term FEs, we can put all form factors as unity. This is because
the range of the vector r is bounded owing to the factor (1 —6,,_r044,) and that the energy

denominator is of order max(q®, g*r?) for large values of ¢ and r. Thus

Qh’a* 3.7 3. 7 3.7 3
16m7r11/d p19p1/d p29,,2/d p36p3/d q049p1+p2—q[
/ds'f' (1 — 6)’3—7'0‘14"1‘) )
(g+7)+(Ps—7)’+(pr+p2— 9’ Pl — 1P} — 13
Carrying out the integration over r we find

.th 4
6 5 /dp10 /dp20 /dp30
/ds 6 0p1+p2 «=(|ps + 4ql, R(q, Pl,Pz;Pa) )
P1+P2—¢I) + ¢ — p? — p2?

1

Ey=w -
(Pr+p2—q)° +¢° —p% —pi)?

where Z(|s|, R) is defined by

= _ 1 3 1 _9q+s/29q—8/2
=(|s|,R) = 27r/d A

in which the principal part integral is implied if R < 0. The concrete expression of =(|s|, R)

can be given, in terms of the symbols ko = ko — s/2 and k; = ko + s/2 , as follows

R K2+ R
Eﬂﬁzé'*‘_logm—%/ﬁarctan%-Fnz, (R>0, ko> s/2)
2

”°H23+ Rlog 5 +R_ 2v/R arctan 2 \/ﬁ ; 2ky, (R>0, ko <s/2)

= — Ko+ R

Z(s,R) = ¢ 0 B

R Ky + \/
noms-i- log 5022 TRITV- log |+n2, (R<0, ko >s/2)
\ We need not consider the case (R<0, ko < 8/2).
In this way we can evaluate F; as
o \kE—t2/4
B, = w R K (koa)s— /d Z/kodt 7 d of du
2=We 2o 0@ 4k0 q 4292
max(ko,|g—t|) 0

g+ko ko

wmin(tu, k2 — u? —t2/4 -
R et | dso [ annS(s, 10+ -t - 5d)
1 9—ko lg—s|

Qk0h2k2
= koa)?(0.012257
= w—g 5 (koa)*(0.012257).

Conclusion
We find the three-particle correlation energy due to the off energy-shell self-energy of

excited particles in a fermion system of hard spheres as

E= —w——;z—( koa)*(0.0496545 log kya + 0.012586).
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(The symbols E, Ey, Erg, Erp, E in the following Errata stand for quantities different from the
ones implied by the same symbols in the above text )

Errata

Renormalized Ring Diagram Energy in a Fermion System of Hard Spheres
S.Yamasaki and T.Yamanishi
Memoirs of Fukui University of Technology, 32 Part 1, 25,(2004).

The last equation on p31 should read

By = w——2—"(kga)*(0.007914).
2m
The last equation on p32 should read

k3 Rk} 4
E= wﬁ—wfég—(koa) (—0.0496545 log koa — 0.025547).
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