On the Solution of Some Functional Equations
by Matrix Calculus

Masayoshi TANIMURA

In the previous papers, mixed boundary value problems in a complicated domain were
reduced to the solution of functional equations expressing the given boundary conditions and,
if necessary, the conditions for the merging of functions separately defined in partial domains
into a smoothly continuous one. The solution was given by a series of repeated contour
integrals in some simpler cases. In this paper it is shown that the numerical computation
may be facilitated by transforming the functional equations into matrix equations by use of

integral transforms proposed earlier and an example is given.
1. Introduction

In treating the problems of mixed boundary value problems in a complicated domain, it
may be found convenient to divide the whole domain into some pieces of partial ones, in
which unknown functions satisfying the given partial differential equation are separately
defined and afterwards they are made to merge into one smoothly continued solution. In the
previous papersl), the method of expressing functions by contour integrals was found very
useful to establish the functional equations to satisfy the conditions for the merging of func-
tions into a smoothly continuous one at the boundaries of the partial domains. It was also
shown ? that in simpler cases the solution of such functional equations may be given by a
series of repeated contour integrals, but the method was not convenient to actual numerical
computation.

To facilitate the computation, it would be more convenient to use a series of matrices in-
stead of that of repeated integrals. For this purpose, some method of conversion of the
contour integrals into matrix forms would be necessary.

In the following, it will be shown that the conversion may be fulfilled by expressing arbitra-
ry functions in integral transforms, the residues at the poles of the integrand being considered
to form vectors.

The procedure in detail, however, varies from one problem to another, so that only an

example will be shown in the following to explain the principle involved.
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2. Expression of Arbitrary Functions by Contour Integrals 1

Consider the ordinary differential equation of the second order in the interval (x, x2) in

the form

Alowge )+ (14 mea) o

where P(x), @(x) and R(x) are given real functions, P(x) and @(x) not vanishing in
the interval and A is a complex parameter.

It is known that the equation has a solution, say Si(x, A), such that the values S\(x1, A) and
Sy (x1, A) at the left end of the interval x: are independent of A . A prime denotes the
derivative with regard to x. There exists another solution S:(x, A), such that the values S:
(x2, A) and S2(xz, A) at the right end of the interval x: are independent of A. When the
length of the interval is finite, these are integral functions of A.

For any value of x in the interval, the expression
{ Si(x, A) S2(x, A) — Six, A) Sa(x, A} Q(x) = E(A) (2)

is independent of x. If E(A) # 0, Si(x,A) and S2(x,A) are two independent solutions
of the equation (1).

The function E(A) has infinite number of simple zeros all lying on the real axis of A D
There exists a smallest one, say 41, hence they may be denoted by Ar so asto be A: < A2
< Ag ovonee CIf A=An, Si(x, An) and S:(x, A») are no longer independent, but the ratio

Si(x, An)/S2(x, An) is a constant depending on An.
For an arbitrary real function F(x), let

b = [ F0)Si(x, A P dr,
" (3)

b = [ F@S:(x, AP dr,

both supposed to exist. The functions ¢:(A) and ¢:(A) will be called Si- and S»- trans-

forms of F(x), respectively. Then in the interval where F(x) is continuous,

_ 1 Si(x, A
Flo) = 5 [ SLEA () az,

(4)

. | SZ(L/U
F(x)——zm- e ED (A dA,
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holdl), in which the paths of integrations R are taken to start from infinity under the real
axis running along the lower side of all the poles of the integrand and after encircling the
smallest pole at A1 clockwise, extending to infinity along the upper side of the real axis as

shown in Fig. 1.
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Fig. 1. Paths of integration.

The integrals (4), when expanded into series by taking the residues at the poles of the in-
tegrands, are reduced to the same form, which is no other than the Stone-Wyle-Titchmarsh-
Kodaira’s expansion.

It must be noted, however, that the functions ¢:(A) and ¢:(A) are determined by the
boundary condition at one end, X1 and x: respectively, while the coefficients in the series
depend on those at the both ends of the interval. That is to say, the value of F(x) is in-
corporated in ¢i(A) and ¢.(A) together with the boundary condition at the respective end.
The function F(x) is expressible in series-form only when the boundary condition at the
remaining end of the interval is specified by giving S:(x, A) or Si(x, A) .

Especially interesting is the case when the interval is divided'into two partial intervals at a
point x¢, (xr1 < xc < x2), and F(x) is given in one of the partial intervals only. For in-

stance, if F(x) is given in the interval x1 < x < Xc, then

6 = [ F@)Si(x, ) P)dr. (5)
Xy
When x lies in the interval II, where x. < x< x2, the path of integration of the second
integral (4) may be swung round to the left as shown by L in Fig.1, because the integrand
diminishes rapidly as |A|— oo Since the integrand is analytic on the left half plane of A4,
the integral vanishes, so that

F(x)=0, (XC<x<x2) (6)

is secured.
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It is also to be noted that the function ¢:1(A) is not influenced by x:. Hence the end point
x2 and the function S:(x, A) may be changed insofar as x. < xc is secured.

These two facts play important roles for the transformation of the functional equation into
matrix form.

Similar arguments hold also when F(x) is given in the interval II, the suffices 1 and 2
being interchanged.

In the above, the functions ¢:(A) and ¢.(A) are considered to be integral functions defined
by equation (3). It is not necessary to restrict these functions as such in the integral (4), but

then the relation (3) is no longer valid.
3. The Problem of Two Partial Intervals as a Simple Example

The problem is to find a function satisfying a given partial differential equation in a rec-
tangular domain subject to the boundary conditions differeing in two partial intervals on one
side of the domain but uniformly given on other sides.

The function #(x, ) satisfying the partial differential equation is assumed to be expressed
by a contour integral of the type (4) containing two variables x and ¥ . Then the boundary

value U(x) and the gradient W (x) on the side under consideration will be given by

1 Si(x, 4) ,
U =527 "Ry ¢ (D dA <z',j:1,2) (7)
1 Si(x, A) tFJ ’
and W(x)—‘—zm A IE(/i) @; (A)dA,

where ¢, (A) and ¢, (A) are connected by

¢, (A =R(A) ¢;(A) _
7=1,2), (8)

and k (A) = D(A) / D(2)

in which D.(A) and D.(A) are given function of A, analytic on the right half plane of A .
No zeros of D.(A) and’Dz(A) are assumed to be coincident with any zeros of E (A). Hence
the paths of integrations of equations (7) may be taken so as to have all the zeros of E(A) on
their right and those of %(A) on their left.

When W (x) is given and ¢,(A), (j=1,2) , are defined by the equation (3), U(x) may

be given by
UG = g [ SER g, ()
= o7 S 255 0, (1) 2 . (9)
=g | 355 v aa{ [ wio si 60 Peo ae.
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If the change of the order of the integration is permissible, the relation is expressed as an

integral equation.

Uunac%wapwnﬁ{i e Y

2t
. (10)
= [ K oW ae (i + ),
where

K(x,e) =58 [ S‘(I’g’(ff(f’ A b da

(11)
_ P& [ Salx, A) S.i(& A)
= zm‘fR By o kA di.

The equality of both forms of (11) is secured by the fact that for any value of An satisfying
E ( A n) =90 ,

Sl(x, An) _ 51(5 A
Slr A = SiE A (12)

When the integrands of (11) =0 (A°¢), (0 < €< 1), the integrals for K (4, §) converge for
t+ & but K(x,&)— oo as (xr— £)—0. Hence, the integral equation is of the first kind
with a singular kernel.

The integral equation (10) may be solved very simply when U (x) is prescribed for the
whole interval (x1, x2). Namely, ¢; (1) may be defined by the equation (3), so that W (x)

may be given by

1 [Siz AW o
W@ =57 TR Ry A =L 0=, (13)

The problem of partial intervals is stated as follows:
Suppose that the interval (x1, xz2) is divided at the point xc(x < xc < x12) into two partial
intervals 1: (;n <x<xe) and II: (xc < x<x). Thefunction U(x) is prescribed for the
interval I, while W (x) =0 in the interval II. Find W (x) for the interval I and U(x) for

the interval II.

4. Expression in Matrix Equation and its Solution

Numerical calculation of the solution of a problem of partial intervals may be facilitated
when the equation is transformed into a matrix form.

Let U®(x) and W®(x) be the values in the interval 1 and U®(x) and W @(x) be those
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in the interval II. They are supposed to be expressed by

U(l)(x) =§l¢nm Sl(x, Bn), }

= (14)
WY(x) = nZ:]qon‘”Sl (x, 7n),
and
U%(2) = 3 .95, (x, Ba).
@ __nz’l 2 (15)
W@ (x) = nZ:)lqon“Sz(x, Yn),

where B»’s and 7»’s are sets of constants suitably chosen.

The coefficients ¢»"’s, ¢:®'s, #"’s and ¢.?’s may be considered that they are ele-

ments of the vectors ¢%, ¢@, ¢® and ¢? respectively, being connected by the relations

(16)

P = A g+ A p?,
‘/)(2) = Ax ¢(l)+1422 927(2),

and

¢(1) = B, ‘/,(1)+ Bis ¢,(2),
(17)

¢ = By ¢+ B,, @2,

where Ai;’s and B:’s are matrices of coefficients.

Substituting (16) into the right-hand side of (17), and comparing both sides,

AnBu+ AwB: = E,  AuBi+ Ai2B = 0, } (18)

A B+ Az2Ba = O, A21312+Azszz = F

are obtained, where E denotes unit matrix. Similarly, by substituting (17) into the right-hand
side of (16) and comparing both sides,

B An+BiAx = E, BuAn+BiAxn = 0,} (19)
19

B2 A+ B2 Aa = 0, BaAi+B»rA»x=F

are obtained.” Since ¢® =0, the problem is reduced to that of finding ¢" satisfying

An V= ¢, (20)
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which is no other than the problem of the inversion of a matrix.
Multiplying bothe sides of the equation (20) by B,, on the left, the relation may be trans-
formed into

Bu (/)( ) = BuAn(ﬂm - (E Ble21)§9( ) (21)

The inverse matrix (E —BizA2)"' may be given by Neumann or Fredholm series. Then

the solution may be written as

(1) = (E—BizAzn )" Bm/fl)
(22)

and ¢(2) = B ¢( ) = BZI ( E BlZA-Zl ) Bll¢}(1)

When expressed by Neumann series3), they may also be given by

¢V = { E4+ Bi2As+ (Bi2An )+ } Bugt??
- BII{E+AIZBZI+ (A12B21)  aKEEREE } Gﬁ(l)
= Bn(E‘—Alszx)ﬂy/’m, (23a)

and ¢(2) = AxaBu ( E— A12321 )Ml ‘ﬁm
= — Azsz1 ( E—Ai2Bx )? ' ‘/" K
— Aw( E—BaAu) " By ¢ (23b)

5. Expression of Matrices A1z and Bz

When the function U®(x) is prescribed in the interval I, where x1 < xc < x2, the coeffi-

(1) »

cients ¢»"’s in the series

UP(x) = ¢“) Si(x, Bn) (24)

may be determined as the residues at the poles of the integrand in (7), £.’s being the zeros
of E(A). Butingeneral, B.’sare not restricted as such. For instance, they may be taken
to be zeros of ApD.(A), where p is 0 or an integer. For simplicity, p will be assumed to be
0 or 1. In the latter case, A= 8, =0 is a simple pole in the integrand. If p = 2, some

modification may be necessary.

The Si-transform of U"(x) is then expressed as

M) = f UY(x) Si(x, A) P(x) dx

___gl 5 [Si(x, B2)Si(x, /1/)‘:211(1, Bn)Si(x, A) ¢
& 151,( c, BH)Sl( c, /1)“‘51(.170, ,Bn)S{(Ic,A)
=2 e"=E e (25)
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so that W (x) corresponding to U (x) in the whole interval is given by

— 1 SZ(I,A)dI had 1) S;(Ic,ﬁn)81(xc,/1)_5l(xc, Bn)Slr(xc,/i)
W(’”)“‘szE(/i)k(A Zgn { A— Ba }

(26)
When x lies in the interval II (xc < x < x:), the path of integration may be taken on R

or L in Fig. 1. If the path L is taken, v»’s are zeros of D\(A). In this case, the coefficients
(V)

¢m s in the series
W) = 3 on® S, 7n) (27)
are given by
0,0 = D:{rm) $ g0 S1(xe, ym) Si(xc, Bn) — Si(xe, ¥m) Si(xe, Bn)
Dy (ym) E(yn) =1 Brn—¥m ’

(28)
where Dl(ym) denotes (dD1(A)/dA) i-»n. Hence the element of the matrix B.: at the m-th

row and the #-th column B::,»» may be written as follows.

_ Dz(?’m)A l Sl(xc, }’m) S{(Ic, Bn) - Sll(xc, Ym)Sl(Ic, Bn)
Dl(?’m)E(')’m) Bn_ Ym ’

Ba,mn= (29)
There are other ways to express W®(x) as a vector. For instance, Y=’s may be taken to
be zeros of S:(x, A). To obtain the matrix Ba, it is only necessary to expand W @ (x) given
by (26) into a series in the interval (x¢, x). But in general, the calculation of the elements
involves matrix multiplication.
The elements of the matrix A:: may also be calculated by the similar arguments in which

Di(4) and D:(2) are interchanged.
6. Conclusion

By the aid of integral transforms, the functional equations appearing in mixed boundary
value problems in a complicated domain may be expressed as matrix equations so that the

solution may be obtained by matrix inversion.

References

1) M.Tanimura, Techn. Repts. Osaka Univ,, 7, No.264, 1957.
2) id. 9, No.344, 1959; 10, No.371, 1960.
3) R.Hilbert and D.Courant, “Methoden der mathematischen Physik”,I, 2te Aufl.(1937) S.8,16.



