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Abstract

A semi group operator is introduced to solve the time-dependent Vlasov equation in
a general coordinate system. The method is applied for derivation of liner perturbation

of plasma distribution function in the electrostatic approximation.
§ 1 Introduction

The Vlasov equation, which is the Boltzmann transport equation without particle-
partilce collision term, describes the distribution of charged as well as neutral particles
in the configuration and velocity spaces. It is used to describe microscopic behavior of
plasma, i.e., in the plasma kinetic theory. The velocity moments of the Vlasov
equation yield fluid model equatuions. Therefore, the Vlasov equation is the basic
equation for plasma stability as well as transport theories. The solution of Vlasov
equation has the singurality due to the wave-particle resonance, and therefore it is not
square integrable (not involved in the Hilbert space). The eigenvalue spectrum always
involves either one or two dimensional continuum depending on the model. The
complete set of eigenfunctions is constructed in a class of generalized function space”"
3)").

In this report, we consider a different aspect of the equation, i.e., the time

evolution operator (semi group) of the Vlasov equation.
§ 2 Vlasov equation

The Vlasov equation for the particle distribution function f (x, v, t) is decribed in a

simple form :

of

ot +Lf=0 (1)

where L is the differential operator defined by
- q 1 9
L=v. v+—n—1—(E+ . vXB) v (2)

Notations X, v represent configuration and velocity spaces, ¢ and m are charge and
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mass, E and B are electric and magnetic fields, respectively, and other notations are
standard.

Since Eq.(1) is the first order differential equation with respect to time f, the
solution can be written as

f (x, v, t)=exp ([dt L) f, (x, V) (3)

where f, is the initial distribution function which may be obtained from the collisional
relaxation theory, and is usually approximated by the Maxwellian distribution function.
The operator exp ( [ dt L) in Eq.(3) describes the time evolution of the solution, and
can be considered as a semi group operator, which has also been used in the problem

5. 6)

of electromagnetic anomalous transport problem™ ®. Since this operator consists of the
differantial operator V and 0/0v in the configuration and velocity spaces, Eq.(3)
may be written in the form

£ (x, v, t)=f, (x+x, v+v) (4)
where the displacements are given by x= { dtv and v= | dtqg (E4+vXB/c)/m, respectively.
This means that the solution operator in Eq.(3) just gives the displacements ;:, v in the
initial distribution function.

We have no further information about the solution in this Lagrangean approach. In
what follows, in order to obtain useful form of the solution, we will employ the
perturbation method.

We decompose f and <;ther related quantities into the ensemble averaged (equilibrium)
} and small fluctuation } as in usual manner : f=,;‘"+;r where the bar over f represents

the ensemble average. The operator L can also be decomposed as L=I:+I~,, where

I — (4 & — 9

L=v. V—( V ¢ — QvXb) 3y (5)
~ q ~ a

L=— =2 V¢ v (6)

Here the electric field has been expressed in term of the scalar potential E=—V ;5 -V q~5 ,
b=B/B, and the magnetic fluctuation has been neglected. Introducing these decompositions
into Eq.(1), we have

ot +3? +Lf+Lf+1Lf+LF=0. (7
Since %——— 0 and F=f, the ensemble average of Eq.(7) yields
ot +Lf=—L{f. (8)

The right hand side of Eq.(8) represents the nonlinear effect which involves anomalous
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transports induced by the fluctuations both in the configuration and velocity spaces”.
Subtracting the both sides of Eq.(8) from Eq.(7), we have

9F oo mr =

ot +Lf+Lf—Lf=—Lf (9)

which governs the fluctuation f. The third and fourth terms in the left side of Eq.(9)
represents the nonlinear effects. In the following, we consider the linear portion of Eq.
(9) neglecting these nonlear terms.

§ 3 Operational method

3. 1 Equilibrium solution

We first consider the averaged solution ;‘which satisfies Eq.(8). The equilibrium
solution } has slow time as well as spatial variations due to the dissipations. In the
microscopic time scale, the slow time variation due to transports may be neglected. If
we neglect the nonlinear dissipation term in Eq.(8), the solution of Eq.(8)may be given
in the form of Eq.(3) by replacing L by L. Without the dissipations in Eq.(8), the
time variation may be small scale Larmor gyromotion. We therefore relate time ¢ with
the phase angle { of particle gyromotion by {={/Q where Q is the Larmor frequency.

If we expand the semi group operator in Eq.(3), we have
f(x, V=2, f. (x, V) (19
where
_ 1 .
fn (x) V)— —;—!'D fo (x1 V) (11)

and D= [d{ (v. V—(¢/m) V¢ 8/d v)/Q. With this operator, f is equivalent to
the exact solution which satisfies i}= 0. When the lowest order solution f, is given,
the equilibrium solution is obtained iteratively : f» =Df.-1/n. The solution may be
approximated by a small number of expansion terms when the norm ||D| is much
smaller than unity, which holds in usual situations. Rutherford et al”. solved the
equation f.;‘= 0 iteratively. Our simple solution involves all order of perturbations.

Let us derive a concrete form of solution. In velocity space, we write v=v,+v,b,
and use as coordinates the energy per uint mass E =1"/2 +Q<;’/m and the magnetic
moment g = v ,’/( 2 B). The perpendicular component of velocity vector can be written
by v,=v, * (e,cos { +e,sin{), where the orthogonal unit vectors e, and e, are perpendicular
to the magnetic field line b. In the transformation of coordinate (x, v)—(x’, E, g,

{), the derivatives in the operator L may be written in the form® :
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—v'y 9 gy O _ 1 9
V=V +—r-n—V¢ E (# VB+Uu <Vb) Vl) B a#
(Ve et L (V) xb)) 5% 1
@ 8 ,v, 9 vwvxb @
av " ae+ B o v, 0¢C 13

where v,’=2 (e — yB—q;S/m). Making use of these relations (12 and (13, we have

YU f4r (v, : Vb— 2oV, b)) -

_vxb o, a
D="o~ V (v.v,+ a 5 V. B 0 & (19

where vp is the precessional drift velocity due to the inhomogenieties of magnetic field
and electric potential : vbo=bx (g VB+ v ,’x +qV ;;;/m)/Q, and «=(b .V) b is the
curvature of magnetic field line. As we shall see, the first term in Eq.(4, when
operated to f,, reduces to the diamagnetic drift term. The equilibrium solution may be
approximated by f=f,+Df,”.

3. 2 Solution for pexfturbation
We now proceed to derivation of the solution } of Eq.(9) neglecting the nonlinear
(third and fourth) terms. Since Eq.(9) is also a first order differential equation, we

obtain
f=—f" dt’exp (° dtL) Lf, (19

In order to have familiar form of solution, we apply the eikonal representation for the
perturbation : ¢ = ;\Sexp (iS—iwt), where the function S, which must be invariant on
the magnetic surface and satisfies b. VS=0, may be given by S=—n (6 — [ vdx)
with v =JB/R being the inverse rotational transform, n is the toroidal mode number
in the flux coordinate system (¢, x, 6)". It is also assumed that (VS » V;\S /25
for n> 1.

We first consider the source term L fin Eq.(5). Making use of approximation f=f,+
Df,, and Egs.(12, (13 and (14, we have

S of _ o 0f, 1 8fy ~ 1 of,
Ve av—v.V¢(a€ -I—B au) u“b.V¢B EP
—ip (vs U % ) v g Il 1

where wp Ervn. VS is the precessional drift frequency. The third term in Eq.(6), which

comes from 9D/0vV, gives the diamagnetic drift term when it is averaged over {. In
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the derivation of Eq.(6, V ;Dafo/ 0v has been neglected, because it has second order
derivaties. If we apply the relation'” v. V=d/dt—ad/0t in the first term in Eq.(6)

and introduce into Eq.(5, we obtain

T_a > ,0f, 1 af,
f_-mq?(ae +B ou

~

¢ 0of, 5 VS (vxb)
B a # +¢ ULZQ vv Vfo] (17)

_..q 1 v » - ~ of
i L dt'exp (J dt" L) [w¢“““q‘ae

+ ((D"I"w\)_i U“bV)

We now examine some characteristics of the semi group operator in Eq.(7, which is
essentially the same as the propagator used in a previous paper'’. We decompose the
velocity in L defined by Eq.(5) into the perpendicular (v,) and parallel (v,,b) components,
and decompose v, again into the Larmor gyromotion component and slow precessional

drift velocity v,. Making use of the relation vyXxbd/0v=—9/0 { from Eq.(3, we
have

J/ =1 G (€)=C (IN+(iwntoub .v) c4v 25 -Qrgr 9

where G ({)=[d{v. VS/Q=vxb .VS/Q represents the Larmor gyromotion effect,
v=—q[dtV ¢ /m is the velocity induced by the electric field and = =t —¢. When we
introduce Eq.(18 into the semi group operator in Eq.(17, the third and fourth terms in
Eq.(8 give the displacements ; and —Q 7 in v and { coordinates on the operand in
Eq.(8. We neglect, however, these displacements, because v is much smaller than
particle velocity v and f, is independent of .

When we express G=asin{ with a=v,. VS/Q, and use the formula exp (igsin{ )=
ZJo (a) exp (1), we have

exp (f:' dt. L)=exp {(Gop+vub . V) —t)} Ji(a)J; (a)expi(1y’—1°¢)

19
Substituting Eq.(19 into Eq.(?, and carrying out the time integral by ¢ bearing in
mind that {(t’)={(t)+Q r, we obtain

=9 gL 1 %fL )= L Si(all lespili— )¢
. -1 . 3 afo
(w+w[)+l Ulle+IQ) [(w+wl)+l U”b .V)'——
B O
+ ;\5 (w aafoe N b. vyXVS . v.Vi, )] (20)

2
v, Q

If we consider the low frequency regime, o < Q, the 1= 0 contribution becomes
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dominant, and we have additional term which does not have w from the second term
in Eq.(29) :

afo

%,___1%3 (G% +(1— ST @i ae ™ )—]13 0f,

G

}_ I('il ?.an/e i X

df, _b. vXDs v, Vi,

d ¢ v Q ) (@1)

(o+w,+iv,b.V) (@

When Eq.(21) is averaged over {, it reduces to the result derived from the gyrokinetic
theory”. The second term in Eq.(21) corresponds to the function h”. The result (21) is
a basis of plasma kinetic theory. Plasma stabilities may be studied by integrating Eq.
(21) over velocity space for both electrons and ions, and introducing into the neutrality

condition.
§ 4 Summary

A semi group operator is derived for the plasma Vlasov equation in the electrostatic
approximation. It is applied for dervation of kinetic solution with the eikonal representation
in a general coordnate system. Our kintic solution is found to reduce the gyro—kinetic

solution in the low frequency limit by averaging over the gyro—phase angle.
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