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Renormalized Ring Diagram Energy in a Fermion System of Hard Spheres
— The Off Energy Shell Effect —

- S.Yamasaki * and T.Yamanishi **

Abstract

The off energy shell effect on the contribution to the energy from the renormalized three-particle
ring diagram is studied for the ground state of a system of hard sphere fermions. The linked cluster
formalism supplemented with infinite partial summation method, such as the K-matrix method,
fails in giving a finite value to the energy of interest. In place of the K-matrix, we make use of
the effective potential which improves the pseudopotential introduced by Fermi 1) and exploited by
Lee, Huang and Yang.? Our potential prevents two spheres from penetrating each other. It gives
a finite energy correction whose dominant part varies as a*loga with the small value of the core

radius a. Correction term of order a* is also presented.

Introduction

Calculation of the ground state energy of a many-body system of fermions interacting via
strong repulsive force (hard core potential) is met with difficulty when one takes account of
correlation between three particles. Three-particle ring diagram represents the contribution
to the energy from the simplest process in which three particles are involved. Strong repulsion
prevents direct application of perturbation method, and one is tempted to renormalize the
contribution from the three-particle ring diagram by introducing the K-matrix in place of
the bare vertex in order to take account of repeated collisions of two excited particles. The
collision of two particles in intermediate state is affected by the presence of a third excited
particle (off energy shell effect). If one neglects the effect, the contribution to the energy
comes out to be of order (k3a,)? in dimensionless scale, where k is the Fermi wave number,
and the s-wave scattering length a, is supposed to be a good substitute for the hard core

radius a. When the off energy shell effect is taken into account, however, the calculation of
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energy is met with ultraviolet divergence.® %) A naive supposition based on the logarithmic
divergence of the energy would be that the energy correction is of order (koa,)* log koa,.
But the supposition contradicts the premise of the K-matrix fomalism, because the latter
assumes that the energy can be expanded in powers of the strength g of the potential at least
in asymptotic sense,® © while the expansion is not possible for a term like (koa,)* log koas,
considering that a, is analytic at g = 0.

This note reports that the divergence difficulty is removed when we use an effective

potential for hard core interaction proposed earlier.” The lowest order potential is given by

2

Vi =—1468(r — a),

ma

where m /2 is the reduced mass of the interacting pair of particles. We treat a as a smallness
parameter. The smallness of the surface of the sphere enables us to treat V in perturbational
terms. When the wave length k™! is large, the first order wave function of the interacting
pair is reduced within the sphere by a factor of order ka from the unperturbed value. In
order to improve the wave function, we work out perturbation calculation to the second
order in V; and to the lowest order in an additional potential V, which is tfeated as the
second order interaction. It is found that the wave function inside the sphere is reduced
by a further factor of order ka when we take V, = V;. This implies that the part V; of
the infinite hard sphere potential makes the wave function almost vanish inside the sphere.
Similarly, of the infinite residual interaction which we leave when we we select Vi, the part
V, is mainly responsible for further reduction of the wave function within the sphere. The
matrix elements of V; and V; sandwiched between two plane wave states q, ¢’ and p, p’ are
given by

dmah?
my2

(¢, 4 Vilp, ) = (¢, d|Velp, p') = fla—q)f(p—p)%(a+d —p-p),

where (2 is the volume of the system being considered, and

_ _ sinQa/2

The factor f(Q) reflects the blocking effect of the strong repulsion on the penetration of

Q=1Q|

particles inside the sphere. It enters in the integrand in the expression of energy as a form
factor which prevents the divergence of the integral. In the limit a — 0, f(Q) tends to unity.
But the approximation f(--:) & 1 is not justified within the integration symbol when the

convergence of the integrals over the arguments of f(---) are poor.
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The Off Energy Shell Effect

We are interested in the ground state system of hard sphere fermions of multiplicity
= (25 +1)(2T + 1),

where S and T are the spin and isospin of a fermion. For the sake of later convenience we

introduce the symbols

w=p(p—1)(p—3)
and ‘
1 gl = g¢>k
0. g <ko
The off energy shell effect yields the following correction term to the energy contribution

from the renormalized three particle ring diagram

0h2 3
E= / pl/d3p2/d p39p10p20p3
/d3 p1+t9p2—t9p3—tf(191 — ps+ 2t)f(P2 —ps — ) f(p2 — ps + 1) f(p1 — P2 + 21)
[(p1+ )2 + (2 — t)° — 12 — p2|[(p1 + £)* + (ps — ) — pT — p}]

{1 -4 /d3 o O 0pstps—t-aof (P2 + Ps — t — 2q0) } ‘
™ (p2+ps—t—qo)’+ (P1+ ) +qa — P2 — 13 — 13

In the last equation we have put f(p; — p2) = 1. This is permissible because the wave

numbers p,, p2 of the particles in the Fermi sea satisfy p;,p2 < ko < a~!. The remaining
form factors involving ¢ or go can not readily be put as unity, although we want to put as
unity as many of them as possible. An approximate value Eq of E valid to the leading order

in kga is obtained by adopting the following three prescriptions:

(1) ignoring the Pauli exclusion principle which restricts the wave number g of an excited

particle,
(2) neglecting the hole wave numbers py, p, and ps in the integrand as compared to go,
(3) neglecting pi, p2, and ps in estimating the integrand as well as the range of ¢ consistent

with the Pauli principle.

Thus

K23 _ ~ _ F4(t) £2(2t) a 2 (2q0 + t)
By = /d3 9 /d3 9 /d3 ] /d3t9 ————{1——/d3 }
0= W g®) @ PP | ¢ Palr [P0, [T o T [ R P+ G+
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In order to correct for the errors introduced by the prescriptions (3),(2) and (1) above,

we introduce three terms FE4,,Ey, and Ey to write

E = Ey+ By + B + En,

where
h2 3 3 2q0 + t)
9, [t { Pao }
16m7r9/d P10y /dp20 /dp3 / / (t+ qo)’ +q5 +1t°
{9p1+t9pz—t9ps—tf (p1—ps+2t) f(p2—ps—t) f (P2 —ps +t)f (P1—p2+2t) f 2('f) F2(2t) }
(1 + )+ (2=t - —plll(pr + 7+ (ps — 2 —pi—pl] 262 28 [°
h2 4
Ey = b /d P19p1/d P29p2/d P3Oy,
/ Bt Op,+9p,—t0p,—tf(P1—D3+28) f(pa—ps — t)  f(p2—ps + t) f(p1—p2+2t)
(pr+ )2 + (p2 — t)* — p? — p? (p1+t)? + (ps — t)* — p — p?
/d3qo { FRep+t) F(pa+ps — t—2qo) }
(t+g) ’+q@+t* (pa+ps—t—qo)’+(pr+ )2 +q — 0 — D} — 13
and

h2 4
/d3 19,,1/(1 P20, /d ps0,,

/ A3t / &3 o pl+t9p2—t9 a—t( _ 99001’2’*'1’3“—‘10)
(P2+ps—t—q)’+ (P +t) +qa—p° —p3 — D3

FA(p2 + ps — t — 2q0) f(p1 — Ps + 28) f(p2 — ps — £) (P2 — ps + &) f(p1 — P2 + 22)
[(p1 + 8)* + (2 = 8)* — P} — P)l((p1 + ©)* + (Ps — 1)’ — 1} — Pl '

We aim at estimating E correctly to terms of order (koa)* in dimensionless scale. The

following formula helps us reduce Ey and E,,

1 / f2 2q0 + t) 1 (1 —3at
-5 s=1— — g~V3aty,
*(t+ qo) 2t +t V3at

In paticular, Ey can be greatly simplified to

Qk h’k2 16 Tdt (sinat sinat/2 2 1
En = Mt M k4 3/_ 1— 1— —+/3at )
Y om o 0 | P\ at/2 \/ga,t( ¢ )

0

The last factor in the integrand of the above expression of Ey can not be treated by power
expansion in terms of at for our present purpose. But the same factor entering in the
integrand of F,, can be approximated by

1 1 _ e—-x/ﬁat) ~ \/—gat
—2 .

b \/§at(




MIEER 7 LV IRFRTDY VT - FAT IS5 - THRLVF—0D#YiAH — Off Energy Shell Effect —

Similarly we can use the following approximation in estimating FEqs,
/dsqo{ 2ep+t) fA(p2 + ps — t — 2q0) }
(t+q)+g@+t (P2+ps—t—q) + (P +t)°+q—pi—p;—pj
N { 772(\/R(t,P1,P2,P3) - %3?5% R(t,p1,p2,p3) > 0
- Wz@t R(t’ D1, P2, p3) <0

where

1 1
R(t, p1, 2, ps) = (P2 + ps — )" + S[(p1 + 1)* — 9 — P — P3)-
The remaining factors f(---) in Fj, and Ey, can be approximated by unity. We put the two

resultant expressions of Ey, and Ey, together to write

El = Ela + Elb
Qh2 4
- / &p:8, / a8, / & psB, / &Pt

16m7r
9P1+"'0P2—t91’3—t \/R t7 pl,p27p3) B ﬁ_l—
(p1 + t)2 + (p2 — t)2 —P% —pg][(m T t)2 + (ps — t)2 "P% __pg] g B

where the integration variables are subject to the condition

R(t,p1, p2, p3) > 0.

In estimating the correction term E,, we can put all form factors as unity. This is because
the range of the vector gp is bounded owing to the factor (1 — 0y 0p,+ps—t-q,) and that the
energy denominator is of order max(t®,t'qZ) for large values of ¢ and go. Carrying out the

integration over go we find

th 4

w [ &pily, [ Epab,, [ Ppol,

/d3 Op,+10p,~t0ps—t Z(|P2 + ps — t|, R(¢, P1,P2,Ps))

(pr+ 0%+ (p2 — £) — P} — Bal[(Pa + ) + (ps — 8)" — P — p3]’
where Z(|s|, R) is defined by
-6 29 —8/2
2(|s|, B) = /d3HW puats o
(s), R

in which the principal part integral is implied if R < 0. The concrete expression of =(|s|, R)

can be given, using the symbols ko = kg — s/2 and Ky = ko + s /2 , as follows

2
”°K23+ B log n::/zcz_:RR — 2v/Rarctan 7"% + Ko, (R>0, ko > s/2)
Korp + Ry, K§+R—2\/}_ZarctanR—9——2k\/§ +2ky, (R>0, k0<3/2)
5(s,R) = { s g"ij KoK
'“0'“254' R log n:;:—l—RR, +v- log o — Vo I + kg, (R<O0, ko> s/2)
\ We need not consider the case. (R<0, ko < s/2)
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Let us now turn to numerical results. Standard calculus gives the following expression

33212
for Ey valid to order (kga)* in unit of energy @&h k

k3 K22
Eo-—’w6—g—0(k: ) (\/_ﬂ-) {—logkoa

1 V3\ 49 104 3 143
- > o g2 21 1
v ‘[(3607r+ g oretan 5 ) 20 7 135982 7 1983 F 5555 °g7} +

0k§ WKy 2 \3
= k —| — ] logkga — 0.0225
w67r o —2 (koa)* ( (\/§7r) og koa 50) ,

where v = 0.577215- - - is Euler’s constant.
For numerical estimation of the integral E;, we find it convenient to use as variables of
integration the absolute values of 8 = py + ps — ¢, g2 = p2 — ¢ and the component Py of py

parallel to £. We also make use of the relation
1
Q= (ps — t)? = 4_(12{(152 + 52— p2 — P22+ A2 + Af, — ZASApcosa},
2

where

As=\/32— (p3 — g2) 2\/(p3+Q2)2—32a
\/t2 (P2 — q2) \/(P2+Q2)2—t2,

and « is the angle between two planes, one determined by ¢, and p, and another determind

by g2 and ps. Thus

Qk o 6 4/3%
By = w20 koa)® / dt{—0,8
1 6 ) om ( 0a tVit—3kg 27t
" ko t+pa T
+1e / dpapa / dqs / dpsps / dss / do / dpy|
0 rnaz(0,ko—t) max(ko,t—p2) Lo La Iy
. V3 s 4 2(t2 + 2tpy) — p§ — p3)
min[¢(¢ + 2py), kg - Pf”] —0t_3k0——3 + 73 \/ NP2 D) .
4 (8 + 2tpy + g5 — p3) (£ + 2tpy + @2 — p2)

The upper and lower bounds of integration in the last equation are complicated due to the
combined effect of the Pauli principle and the requirement R(%,p;, pz,ps) > 0. Each of
them can depend on other variables of integration to be carried out after the quadrature

being considered is performed. The lower bound L of p; is given by

0, t> ko
Ly=14 ko—t, t<ko and g% > pi(1+t/ko)+ kot — Tt
c, otherwise
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where

7 {(k2 + P} — 4kot) (P} — 48%) — 24,/7}),

1 1

2 2 2 2

= —(3k§ + dkot + 4t° — pt + ———5——
¢ 4( 0 0 2 2752—|—2q§—p2

and
n = 8kgt(ko — t) + k3 (8a5 — ko — Tp3) + p3 (kS — 15 + 8kot).

The lower bound L, and the upper bound H, of s are given by

f

q2 — Ps3, t>ky and p3 < -—b
L — | u_, t>ky and p3 > —b
’ u_, t<ky and p3<c
{ \/2(p§+p%—t2—2kot), t<ko and pP3 > cC
and
g_l® + ps, p3>b
) Uy, otherwise
where
1
b= g VaGE =P+ eh + o — )7 — (4 i~
1
i = @+ B - -+ (£ 4,7,
and

A=K} — (s — )2/ (p3 +1)2 —

The lower bounds L, and Ly of & and py respectively can be written as
L, = arccosmin(Z, 1),

in which
1

2= 744

(424 22+ (5 + £~ 5 — ) — 483}
and

1
Ll“ = E ma‘x(_2k0t) —t2:p§ +p§ - t2 - 32/2)'

With these bounds the integral E; turns out to be

2k3 W2kl 4
= —_— —_ 4
Ei=w s (koa) ( \/_W) log kpa — 0.022550
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The remaining integral F; can be transformed as

k3 h2k? .
E, = w____O__O )4 5 /dt / dpy) min[t(t + 2py))), k:g —pgn]
672 k:o
max(0,ko—t)
ko t+p2 1 ko
/ dpape / 92023 I T — / dpsps
maz(0,ko—1) max(ko,t—p2) P T 92 ~ P2 maz(0,ko—t)
t+p3 T
1
dgsqs /d¢ 5(8, 1s% + 3(t* + 2tpy — P — P2 )
2+ 2tpy + q§ _ pg 1 2( Il 2 3)
max{ko,t—p3) 0

where

1
s=|p2tps—1t= \/(‘I2+Q3 p3 —p3)? + AL+ A} — 24,4, cos ¢,

A= \/(Q3 +p3)? — t2\/752 — (g5 — p3)?,

and ¢ is the angle between two directions determined by ¢ X py and ¢ x ps. Our numerical

result is .
k3 %k
E, = w6—82—°(k0a)4(—0.000997).
Conclusion
Putting the above results together, we find the correlation energy due to the off energy

shell effect for the renormalized three-particle ring diagram as

E = w—3 — (koa)*(—0.0496545 log koa — 0.03246).
m
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